3 years ago

Nuclear structure calculations for neutron-star crusts.

Claudio Ebel, Thomas J. Bürvenich, Igor Mishustin

The goal of this paper is to investigate properties of clusterized nuclear matter which is believed to be present in crusts of neutron stars at subnuclear densities. It is assumed that the whole system can be represented by the set of Wigner-Seitz cells, each containing a nucleus and an electron background under the condition of electroneutrality. The nuclear structure calculations are performed within the relativistic mean-field model with the NL3 parametrization. The first set of calculations is performed assuming the constant electron background. The evolution of neutron and proton density distributions was systematically studied along isotopic chains until very neutron-rich system beyond the neutron dripline. Then we have replaced the uniform electron background with the realistic electron distributions, obtained within the Thomas-Fermi approximation in a self-consistent way with the proton distributions. Finally, we have investigated the evolution of the $\beta$-stability valley as well as neutron and proton driplines with the electron density.

Publisher URL: http://arxiv.org/abs/1801.06471

DOI: arXiv:1801.06471v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.