3 years ago

Predicting colloidal crystals from shapes via inverse design and machine learning.

Greg van Anders, Sharon C. Glotzer, Yina Geng

A fundamental challenge in materials design is linking building block attributes to crystal structure. Addressing this challenge is particularly difficult for systems that exhibit emergent order, such as entropy-stabilized colloidal crystals. We combine recently developed techniques in inverse design with machine learning to construct a model that correctly classifies the crystals of more than ten thousand polyhedral shapes into 13 different structures with a predictive accuracy of 96% using only two geometric shape measures. With three measures, 98% accuracy is achieved. We test our model on previously reported colloidal crystal structures for 71 symmetric polyhedra and obtain 92% accuracy. Our findings (1) demonstrate that entropic colloidal crystals are controlled by surprisingly few parameters, (2) provide a quantitative model to predict these crystals solely from the geometry of their building blocks, and (3) suggest a prediction paradigm that easily generalizes to other self-assembled materials.

Publisher URL: http://arxiv.org/abs/1801.06219

DOI: arXiv:1801.06219v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.