5 years ago

Critical Comparison of FRET-Sensor Functionality in the Cytosol and Endoplasmic Reticulum and Implications for Quantification of Ions

Critical Comparison of FRET-Sensor Functionality in the Cytosol and Endoplasmic Reticulum and Implications for Quantification of Ions
Ralph Jimenez, Margaret C. Carpenter, Kyle P. Carter, Amy E. Palmer, Brett Fiedler
Genetically encoded sensors based on fluorescence resonance energy transfer (FRET) are powerful tools for quantifying and visualizing analytes in living cells, and when targeted to organelles have the potential to define distribution of analytes in different parts of the cell. However, quantitative estimates of analyte distribution require rigorous and systematic analysis of sensor functionality in different locations. In this work, we establish methods to critically evaluate sensor performance in different organelles and carry out a side-by-side comparison of three different genetically encoded sensor platforms for quantifying cellular zinc ions (Zn2+). Calibration conditions are optimized for high dynamic range and stable FRET signals. Using a combination of single-cell microscopy and a novel microfluidic platform capable of screening thousands of cells in a few hours, we observe differential performance of these sensors in the cytosol compared to the ER of HeLa cells, and identify the formation of oxidative oligomers of the sensors in the ER. Finally, we use new methodology to re-evaluate the binding parameters of these sensors both in the test tube and in living cells. Ultimately, we demonstrate that sensor responses can be affected by different cellular environments, and provide a framework for evaluating future generations of organelle-targeted sensors.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02933

DOI: 10.1021/acs.analchem.7b02933

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.