3 years ago

Many-body spectral functions from steady state density functional theory.

David Jacob, Stefan Kurth

We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal STM-like setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup one of the electrodes serves as a probe ('STM tip'), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples we apply our scheme to calculate the spectral functions of two non-trivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

Publisher URL: http://arxiv.org/abs/1801.06383

DOI: arXiv:1801.06383v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.