3 years ago

Classification of Quench Dynamical Behaviours in Spinor Condensates.

L.-M. Duan, Sheng-Tao Wang, Ceren B. Dağ

Thermalization of isolated quantum systems is a long-standing fundamental problem where different mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench dynamical behaviours of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals, thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival. Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system. The reason behind both thermalizing and nonthermalizing behaviours in the same model under different initial conditions is linked to the discussion of `rare' nonthermal states existing in the spectrum. We also propose a method to predict the collapse and revival time scales and how they scale with the number of particles in the condensate. We use a sudden quench to drive the system to non-equilibrium and hence the theoretical predictions given in this paper can be probed in experiments.

Publisher URL: http://arxiv.org/abs/1710.03290

DOI: arXiv:1710.03290v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.