3 years ago

Significance and Functional Similarity for Identification of Disease Genes

Ekta Shah, Pradipta Maji,
One of the most significant research issues in functional genomics is insilico identification of disease related genes. In this regard, the paper presents a new gene selection algorithm, termed as SiFS, for identification of disease genes. It integrates the information obtained from interaction network of proteins and gene expression profiles. The proposed SiFS algorithm culls out a subset of genes from microarray data as disease genes by maximizing both significance and functional similarity of the selected gene subset. Based on the gene expression profiles, the significance of a gene with respect to another gene is computed using mutual information. On the other hand, a new measure of similarity is introduced to compute the functional similarity between two genes. Information derived from the protein-protein interaction network forms the basis of the proposed SiFS algorithm. The performance of the proposed gene selection algorithm and new similarity measure, is compared with that of other related methods and similarity measures, using several cancer microarray data sets.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.