3 years ago

Collective Prediction of Disease-Associated miRNAs Based on Transduction Learning

Pingjian Ding, Xiangtao Chen, Cheng Liang, Buwen Cao, , Jiawei Luo
The discovery of human disease-related miRNA isa challenging problem for complex disease biology research. For existing computational methods, it is difficult to achieve excellent performance with sparse known miRNA-disease association verified by biological experiment. Here, we develop CPTL, a Collective Prediction based on Transduction Learning, to systematically prioritize miRNAs related to disease. By combining disease similarity, miRNA similarity with known miRNA-disease association, we construct a miRNA-disease network for predicting miRNA-disease association. Then, CPTL calculates relevance score and updates the network structure iteratively, until a convergence criterion is reached. The relevance score of node including miRNA and disease is calculated by the use of transduction learning based on its neighbors. The network structure is updated using relevance score, which increases the weight of important links. To show the effectiveness of our method, we compared CPTL with existing methods based on HMDD datasets. Experimental results indicate that CPTL outperforms existing approaches in terms of AUC, precision, recall, and F1-score. Moreover, experiments performed with different number of iterations verify that CPTL has good convergence. Besides, it is analyzed that the varying of weighted parameters affect predicted results. Case study on breast cancer has further confirmed the identification ability of CPTL.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.