3 years ago

Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%

Printed Nonfullerene Organic Solar Cells with the Highest Efficiency of 9.5%
Yufeng Jiang, Alei Liu, Thomas P. Russell, Junyu Yang, Lintao Hou, Feng Liu, Wenhao Zheng, Yuanbao Lin, Fengling Zhang, Yingzhi Jin, Fei Huang, Sheng Dong
The current work reports a high power conversion efficiency (PCE) of 9.54% achieved with nonfullerene organic solar cells (OSCs) based on PTB7-Th donor and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene) (ITIC) acceptor fabricated by doctor-blade printing, which has the highest efficiency ever reported in printed nonfullerene OSCs. Furthermore, a high PCE of 7.6% is realized in flexible large-area (2.03 cm2) indium tin oxide (ITO)-free doctor-bladed nonfullerene OSCs, which is higher than that (5.86%) of the spin-coated counterpart. To understand the mechanism of the performance enhancement with doctor-blade printing, the morphology, crystallinity, charge recombination, and transport of the active layers are investigated. These results suggest that the good performance of the doctor-blade OSCs is attributed to a favorable nanoscale phase separation by incorporating 0.6 vol% of 1,8-diiodooctane that prolongs the dynamic drying time of the doctor-bladed active layer and contributes to the migration of ITIC molecules in the drying process. High PCE obtained in the flexible large-area ITO-free doctor-bladed nonfullerene OSCs indicates the feasibility of doctor-blade printing in large-scale fullerene-free OSC manufacturing. For the first time, the open-circuit voltage is increased by 0.1 V when 1 vol% solvent additive is added, due to the vertical segregation of ITIC molecules during solvent evaporation. Printed nonfullerene organic solar cells are investigated with a power conversion efficiency of 9.54% via incorporating a 1,8-diiodooctane additive for achieving a favorable nanoscale phase separation. The migration of nonfullerene acceptor molecules from bottom to top helps form the optimal donor/acceptor interface distribution, leading to the reduced exciton recombination and optimized electrical parameters.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701942

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.