3 years ago

Structural and Electrochemical Characteristics of Ca-Doped “Flower-like” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries

Structural and Electrochemical Characteristics of
Ca-Doped “Flower-like” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries
Haoyue Guo, Eric A. Stach, Yiman Zhang, Esther S. Takeuchi, Xiao Tong, Kenneth J. Takeuchi, Stanislaus S. Wong, Amy C. Marschilok, Lei Wang, Jing Li, Ping Liu
Doped motifs offer an intriguing structural pathway toward improving conductivity for battery applications. Specifically, Ca-doped, three-dimensional “flower-like” Li4–xCaxTi5O12 (“x” = 0, 0.1, 0.15, and 0.2) micrometer-scale spheres have been successfully prepared for the first time using a simple and reproducible hydrothermal reaction followed by a short calcination process. The products were experimentally characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge testing. Calcium dopant ions were shown to be uniformly distributed within the LTO structure without altering the underlying “flower-like” morphology. The largest lattice expansion and the highest Ti3+ ratios were noted with XRD and XPS, respectively, whereas increased charge transfer conductivity and decreased Li+-ion diffusion coefficients were displayed in EIS for the Li4–xCaxTi5O12 (“x” = 0.2) sample. The “x” = 0.2 sample yielded a higher rate capability, an excellent reversibility, and a superior cycling stability, delivering 151 and 143 mAh/g under discharge rates of 20C and 40C at cycles 60 and 70, respectively. In addition, a high cycling stability was demonstrated with a capacity retention of 92% after 300 cycles at a very high discharge rate of 20C. In addition, first-principles calculations based on density functional theory (DFT) were conducted with the goal of further elucidating and understanding the nature of the doping mechanism in this study. The DFT calculations not only determined the structure of the Ca-doped Li4Ti5O12, which was found to be in accordance with the experimentally measured XPD pattern, but also yielded valuable insights into the doping-induced effect on both the atomic and electronic structures of Li4Ti5O12.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b03847

DOI: 10.1021/acs.chemmater.7b03847

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.