3 years ago

Directed Self-Assembly of Dipeptide Single Crystal in a Capillary

Self-Assembly of Dipeptide Single Crystal
in a Capillary
Meifang Fu, Hans Riegler, Bingbing Sun, Luru Dai, Junbai Li, Yang Yang, Qi Li, Yue Li, Guangle Li, Stephan Eickelmann, Jinbo Fei
Controlled growth of one-dimensional nanostructures is playing a key role in creating types of materials for functional devices. Here, we report procedures for controlled assembly of the dipeptide diphenylalanine (FF) into aligned and ultralong single crystals in a capillary. With the evaporation of solvent, nucleation of the crystal occurred in the confined region, and the crystal grew continuously with a supply of molecules from the concentration gradient system inside the capillary. Based on the “Knudsen regime”, an ultralong aligned individual FF single crystal possessing an active optical waveguide property at macroscopic length scale could be obtained. Moreover, capillary is also an effective microdevice to investigate the disassembly process of the FF single crystals. This strategy has potentials to broaden the range of applications of aligned organic nanomaterials.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b08925

DOI: 10.1021/acsnano.7b08925

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.