3 years ago

Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia

Fine-scale landscape genomics helps explain the slow spatial spread of Wolbachia through the Aedes aegypti population in Cairns, Australia
Igor Filipović, Ary A. Hoffmann, Thomas L. Schmidt, Gordana Rašić
The endosymbiotic bacterium Wolbachia suppresses the capacity for arbovirus transmission in the mosquito Aedes aegypti, and can spread spatially through wild mosquito populations following local introductions. Recent introductions in Cairns, Australia have demonstrated slower than expected spatial spread. Potential reasons for this include: (i) barriers to Ae. aegypti dispersal; (ii) higher incidence of long-range dispersal; and (iii) intergenerational loss of Wolbachia. We investigated these three potential factors using genome-wide single-nucleotide polymorphisms (SNPs) and an assay for the Wolbachia infection wMel in 161 Ae. aegypti collected from Cairns in 2015. We detected a small but significant barrier effect of Cairns highways on Ae. aegypti dispersal using distance-based redundancy analysis and patch-based simulation analysis. We detected a pair of putative full-siblings in ovitraps 1312 m apart, indicating long-distance female movement likely mediated by human transport. We also found a pair of full-siblings of different infection status, indicating intergenerational loss of Wolbachia in the field. These three factors are all expected to contribute to the slow spread of Wolbachia through Ae. aegypti populations, though from our results it is unclear whether Wolbachia loss and long-distance movement are sufficiently common to reduce the speed of spatial spread appreciably. Our findings inform the strategic deployment of Wolbachia-infected mosquitoes during releases, and show how parameter estimates from laboratory studies may differ from those estimated using field data. Our landscape genomics approach can be extended to other host/symbiont systems that are being considered for biocontrol.

Publisher URL: https://www.nature.com/articles/s41437-017-0039-9

DOI: 10.1038/s41437-017-0039-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.