3 years ago

Machine Learning Methods for User Positioning With Uplink RSS in Distributed Massive MIMO.

Ekram Hossain, K. N. R. Surya Vara Prasad, Vijay K. Bhargava

We consider a machine learning approach based on Gaussian process regression (GP) to position users in a distributed massive multiple-input multiple-output (MIMO) system with the uplink received signal strength (RSS) data. We focus on the scenario where noise-free RSS is available for training, but only noisy RSS is available for testing purposes. To estimate the test user locations and their 2{\sigma} error-bars, we adopt two state-of-the-art GP methods, namely, the conventional GP (CGP) and the numerical approximation GP (NaGP) methods. We find that the CGP method, which treats the noisy test RSS vectors as noise-free, provides unrealistically small 2{\sigma} error-bars on the estimated locations. To alleviate this concern, we derive the true predictive distribution for the test user locations and then employ the NaGP method to numerically approximate it as a Gaussian with the same first and second order moments. We also derive a Bayesian Cramer-Rao lower bound (BCRLB) on the achievable root- mean-squared-error (RMSE) performance of the two GP methods. Simulation studies reveal that: (i) the NaGP method indeed provides realistic 2{\sigma} error-bars on the estimated locations, (ii) operation in massive MIMO regime improves the RMSE performance, and (iii) the achieved RMSE performances are very close to the derived BCRLB.

Publisher URL: http://arxiv.org/abs/1801.06619

DOI: arXiv:1801.06619v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.