3 years ago

Probabilistic Tools for the Analysis of Randomized Optimization Heuristics.

Benjamin Doerr

This chapter collects several probabilistic tools that proved to be useful in the analysis of randomized search heuristics. This includes classic material like Markov, Chebyshev and Chernoff inequalities, but also lesser known topics like stochastic domination and coupling or Chernoff bounds for geometrically distributed random variables and for negatively correlated random variables. Almost all of the results presented here have appeared previously, some, however, only in recent conference publications. While the focus is on collecting tools for the analysis of randomized search heuristics, many of these may be useful as well in the analysis of classic randomized algorithms or discrete random structures.

Publisher URL: http://arxiv.org/abs/1801.06733

DOI: arXiv:1801.06733v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.