3 years ago

Dense Recurrent Neural Networks for Scene Labeling.

Haibin Ling, Heng Fan

Recently recurrent neural networks (RNNs) have demonstrated the ability to improve scene labeling through capturing long-range dependencies among image units. In this paper, we propose dense RNNs for scene labeling by exploring various long-range semantic dependencies among image units. In comparison with existing RNN based approaches, our dense RNNs are able to capture richer contextual dependencies for each image unit via dense connections between each pair of image units, which significantly enhances their discriminative power. Besides, to select relevant and meanwhile restrain irrelevant dependencies for each unit from dense connections, we introduce an attention model into dense RNNs. The attention model enables automatically assigning more importance to helpful dependencies while less weight to unconcerned dependencies. Integrating with convolutional neural networks (CNNs), our method achieves state-of-the-art performances on the PASCAL Context, MIT ADE20K and SiftFlow benchmarks.

Publisher URL: http://arxiv.org/abs/1801.06831

DOI: arXiv:1801.06831v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.