3 years ago

Cross-Domain Transfer in Reinforcement Learning using Target Apprentice.

Girish Joshi, Girish Chowdhary

In this paper, we present a new approach to Transfer Learning (TL) in Reinforcement Learning (RL) for cross-domain tasks. Many of the available techniques approach the transfer architecture as a method of speeding up the target task learning. We propose to adapt and reuse the mapped source task optimal-policy directly in related domains. We show the optimal policy from a related source task can be near optimal in target domain provided an adaptive policy accounts for the model error between target and source. The main benefit of this policy augmentation is generalizing policies across multiple related domains without having to re-learn the new tasks. Our results show that this architecture leads to better sample efficiency in the transfer, reducing sample complexity of target task learning to target apprentice learning.

Publisher URL: http://arxiv.org/abs/1801.06920

DOI: arXiv:1801.06920v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.