3 years ago

On the Iteration Complexity Analysis of Stochastic Primal-Dual Hybrid Gradient Approach with High Probability.

Qi Qin, Linbo Qiao, Xicheng Lu, Tianyi Lin

In this paper, we propose a stochastic Primal-Dual Hybrid Gradient (PDHG) approach for solving a wide spectrum of regularized stochastic minimization problems, where the regularization term is composite with a linear function. It has been recognized that solving this kind of problem is challenging since the closed-form solution of the proximal mapping associated with the regularization term is not available due to the imposed linear composition, and the per-iteration cost of computing the full gradient of the expected objective function is extremely high when the number of input data samples is considerably large.

Our new approach overcomes these issues by exploring the special structure of the regularization term and sampling a few data points at each iteration. Rather than analyzing the convergence in expectation, we provide the detailed iteration complexity analysis for the cases of both uniformly and non-uniformly averaged iterates with high probability. This strongly supports the good practical performance of the proposed approach. Numerical experiments demonstrate that the efficiency of stochastic PDHG, which outperforms other competing algorithms, as expected by the high-probability convergence analysis.

Publisher URL: http://arxiv.org/abs/1801.06934

DOI: arXiv:1801.06934v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.