3 years ago

Restoration by Compression.

Michael Elad, Alfred M. Bruckstein, Yehuda Dar

In this paper we study the topic of signal restoration using complexity regularization, quantifying the compression bit-cost of the signal estimate. While complexity-regularized restoration is an established concept, solid practical methods were suggested only for the Gaussian denoising task, leaving more complicated restoration problems without a generally constructive approach. Here we present practical methods for complexity-regularized restoration of signals, accommodating deteriorations caused by a known linear degradation operator of an arbitrary form. Our iterative procedure, obtained using the Half Quadratic Splitting approach, addresses the restoration task as a sequence of simpler problems involving $ \ell_2$-regularized estimations and rate-distortion optimizations (considering the squared-error criterion). Further, we replace the rate-distortion optimizations with an arbitrary standardized compression technique and thereby restore the signal by leveraging underlying models designed for compression. Additionally, we propose a shift-invariant complexity regularizer, measuring the bit-cost of all the shifted forms of the estimate, extending our method to use averaging of decompressed outputs gathered from compression of shifted signals. On the theoretical side, we present an analysis of complexity-regularized restoration of a cyclo-stationary Gaussian signal from deterioration by a linear shift-invariant operator and an additive white Gaussian noise. The theory shows that optimal complexity-regularized restoration relies on an elementary restoration filter and compression spreading reconstruction quality unevenly based on the energy distribution of the degradation filter. Nicely, these ideas are realized also in the proposed practical methods. Finally, we present experiments showing good results for image deblurring and inpainting using the HEVC compression standard.

Publisher URL: http://arxiv.org/abs/1711.05147

DOI: arXiv:1711.05147v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.