5 years ago

Enhanced Optical Sensitivity in Thermoresponsive Photonic Crystal Hydrogels by Operating Near the Phase Transition

Enhanced Optical Sensitivity in Thermoresponsive Photonic Crystal Hydrogels by Operating Near the Phase Transition
Kelsey I. MacConaghy, Mark P. Stoykovich, Joel L. Kaar, Sukwon Jung
Photonic crystal hydrogels composed of analyte-responsive hydrogels and crystalline colloidal arrays have immense potential as reagentless chemical and biological sensors. In this work, we investigated a general mechanism to rationally tune the sensitivity of photonic crystal hydrogels consisting of stimuli-responsive polymers to small molecule analytes. This mechanism was based on modulating the demixing temperature of such hydrogels relative to the characterization temperature to in effect maximize the extent of phase separation behavior; thus, the volume changes in response to the target analytes. Using ethanol as a model analyte, we demonstrated that this mechanism led to a dramatic increase in the sensitivity of optically diffracting poly(N-isopropylacrylamide) (pNIPAM) hydrogel films that exhibit a lower critical solution temperature (LCST) behavior. The demixing temperature of the pNIPAM films was modulated by copolymerization of the films with relatively hydrophobic and hydrophilic comonomers, as well as by varying the ionic strength of the characterization solution. Our results showed that copolymerization of the films with 2.5 mol % of N-tert-butylacrylamide, which is hydrophobic relative to pNIPAM, enabled the detection limit of the pNIPAM films to ethanol to be lowered ∼2-fold at 30 °C. Additionally, increasing the ionic strength of the characterization solution above 200 mM resulted in a dramatic increase in the extent of contraction of the films in the presence of ethanol. Ultimately, it was demonstrated that as little as 16 g/L or 2 vol % of ethanol in water could reliably be detected, and that the sensitivity of the films to ethanol was predictably greatest when operating near the phase transition, such that even small additions of the analyte induced the start of demixing and the collapse of the hydrogel. Such a mechanism may be extended to photonic crystal hydrogel sensors prepared from other stimuli-responsive polymers and more broadly exploited to enhance the utility of these sensors for a broad range of analytes.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07179

DOI: 10.1021/acsami.7b07179

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.