5 years ago

Probing the Crystal Plane Effect of Co3O4 for Enhanced Electrocatalytic Performance toward Efficient Overall Water Splitting

Probing the Crystal Plane Effect of Co3O4 for Enhanced Electrocatalytic Performance toward Efficient Overall Water Splitting
Yu Wang, Huijuan Zhang, Ling Fang, Zhiqiang Jiang, Li Liu, Xiao Gu, Haitao Xu
Identifying effective methods to enhance the properties of catalysts is urgent to broaden the scanty technologies, so far. Herein, we synthesized four Co3O4 crystals with different crystal planes and explored the crystal planes’ effects on electrochemical water splitting through theoretical and experimental studies for the first time. The results illustrate that the correlation of catalytic activity is established as {111} > {112} > {110} > {001}. Co3O4 crystals exposed with {111} facets show the highest OER (oxygen evolution reaction) and HER (hydrogen evolution reaction) activities. Upon fabrication in an alkaline electrolyzer, the bifunctional {111}∥{111} couple manifests the highest catalytic activity and satisfying durability for overall water splitting. Density functional theory (DFT) explains that the {111} facet possesses the biggest dangling bond density, highest surface energy, and smallest absolute value of ΔGH*, leading to the enhanced electrocatalytic performance. This work will broaden our vision to improve the activity of various electrocatalysts by selectively exposing the specific crystal planes.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07793

DOI: 10.1021/acsami.7b07793

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.