3 years ago

Role of quantum fluctuations on spin liquids and ordered phases in the Heisenberg model on the honeycomb lattice.

J. Merino, A. Ralko

Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1/2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3)plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansatze. For S=1/2, we find a quantum spin liquid (QSL) stabilized between the N\'eel, spiral and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1/2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasi-classical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D, to various S=1 honeycomb compounds, we have analyzed the destruction of magnetic order based on a SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S=1/2 to the S=1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S=1/2 by S=1 localized moments in certain honeycomb compounds.

Publisher URL: http://arxiv.org/abs/1801.07042

DOI: arXiv:1801.07042v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.