3 years ago

Superconducting phase diagrams of cuprates and pnictides as a key to the HTSC mechanism.

O. M. Ivanenko, K. V. Mitsen

This paper reviews experimental phase diagrams of cuprates and pnictides to demonstrate that specific features of the superconducting phase diagrams in bothHTSC families can be understood within the framework of the proposed approach,which assumes the formation, under heterovalent doping, of localized trion complexes consisting of a doped carrier and charge transfer (CT) excitons. The geometry of such cells containing CT excitons (CT plaquettes) in the basal plane of the crystal is determined by its crystal structure and the type of dopant, so that the dopant concentration range corresponding to the existence of a percolation cluster of CT plaquettes can be readily determined for each particular compound. These dopant concentration ranges coincide with good accuracy with the experimental ranges of superconducting domes in the phase diagrams of the HTSC compounds considered. The generation of free carriers and the mechanism of superconducting pairing in this pattern is related to biexciton complexes (Heitler-London centers) emerging in neighboring CT plaquettes.

Publisher URL: http://arxiv.org/abs/1604.03028

DOI: arXiv:1604.03028v6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.