3 years ago

Electronic Transport in Bilayer MoS2 Encapsulated in HfO2

Electronic Transport in Bilayer MoS2 Encapsulated in HfO2
Jeffrey W. Baldwin, Nelson Y. Garces, Brian H. Houston, Bernard R. Matis, Erin R. Cleveland
The exact nature of the interface between a two-dimensional crystal and its environment can have a significant impact on the electronic transport within the crystal, and can place fundamental limitations on transistor performance and long-term functionality. Two-dimensional transition-metal dichalcogenides are a new class of transistor channel material with electronic properties that can be tailored through dielectric engineering of the material/environmental interface. Here, we report electrical transport measurements carried out in the insulating regime of bilayer molybdenum disulfide, which has been encapsulated within a high-κ hafnium oxide dielectric. Temperature- and carrier-density-dependent measurements show that for T < 130 K the transport is governed by resonant tunneling, and at T = 4.2 K the tunneling peak lineshape is well-fitted by a Lorentzian with an amplitude less than e2/h. Estimates of tunneling time give τ ∼ 1.2 ps corresponding to a frequency f ∼ 0.84 THz. The tunneling processes are observable up to T ∼ 190 K (more than a factor of 6 higher than that previously reported for MoS2 on SiO2) despite the onset of variable range hopping at T ∼ 130 K, demonstrating the coexistence of the two transport processes within the same temperature range. At constant temperature, varying the Fermi energy allows experimental access to each transport process. The results are interpreted in terms of an increase in charge carrier screening length and a decrease in electron–phonon coupling induced by the hafnium oxide. Our results represent the first demonstration of the intermediate tunneling–hopping transport regime in a two-dimensional material. The results suggest that interface engineering may be a macroscopic tool for controlling quantum transport within such materials as well as for increasing the operating temperatures for resonant-tunneling devices derived from such materials, with applications in high-frequency electronics and logic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04397

DOI: 10.1021/acsami.7b04397

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.