3 years ago

Quantum chaos of dark matter in the Solar System.

D.L.Shepelyansky

We perform time-dependent analysis of quantum dynamics of dark matter particles in the Solar System. It is shown that this problem has similarities with a microwave ionization of Rydberg atoms studied previously experimentally and analytically. On this basis it is shown that the quantum effects for chaotic dark matter dynamics become significant for dark matter mass ratio to electron mass being smaller than $2 \times 10^{-15}$. Below this border multiphoton diffusion over Rydberg states of dark matter atom becomes exponentially localized in analogy with the Anderson localization in disordered solids. The life time of dark matter in the Solar System is determined in dependence on mass ratio in the localized phase and a few photon ionization regime. The quantum effects for dark matter captured by other binary systems are also discussed.

Publisher URL: http://arxiv.org/abs/1711.07815

DOI: arXiv:1711.07815v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.