3 years ago

The Effect of Gravitational Settling on Concentration Profiles and Dispersion Within and Above Fractured Media.

Tomer Duman, Uri Shavit, Ran Holtzman

The transport of heavy particles in a medium that consists of fluid and solid phases such as stream gravel beds, cracked soils and wetlands is affected by processes such as attachment-detachment, gravity and drag, and by mixing processes that are induced by Taylor dispersion and mechanical dispersion. This paper addresses an additional dispersion mechanism which is induced by gravitational settling and is a result of the coupling between the modified particle concentration (the change of particle number density due to settling) and the lateral velocity profiles at the subscale. Heavy particles that move in areas of low horizontal velocity (e.g., near solid surfaces and wake regions) settle closer to the release source as compared to particles in high velocity regions. The macroscopic concentration field of such suspensions is influenced by the ratio between the settling velocity and the subscale distribution of the horizontal velocities. The objective of the study is to isolate and quantify this type of dispersion using controlled flow scenarios. We used a Taylor brush geometry (an array of vertical grooves) to numerically solve the flow. Particles were released from a vertical plane, generating a constant flux. The subscale Eulerian concentration was compiled from simulated trajectories and then spatially averaged to generate macroscopic concentration fields. The results show that this settling-induced dispersion is significant in regions near the source and that it cannot be modeled using Fick's law type of formulations. A parametric investigation shows that the location of the highest dispersion flux is linearly proportional to both the groove spacing and depth. A proposed model that estimates this location is used to evaluate where settling-induced dispersion should not be ignored.

Publisher URL: http://arxiv.org/abs/1801.06746

DOI: arXiv:1801.06746v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.