5 years ago

Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting

Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting
Rongrong Qi, Sen Liu, Hongran Zhao, Teng Fei, Tong Zhang, Jianxun Dai
This article describes the development of a kind of full carbon-based humidity sensor fabricated on the paper substrate by handwriting. The electrodes were written by commercial pencils, and the sensitive layer was drawn with an oxidized multiwalled carbon nanotubes (o-MWCNTs) ink marker. The resultant devices exhibit good reproducibility and stability during the dynamic measurement. The response of the optimized paper-based sensor exhibits about five times higher than sensors fabricated on the ceramic substrate, which is owing to the hydrophilic property of the paper substrate. The structure of the sensitive layer formed by dispersing sensitive materials in the porous surface of paper substrates alleviates the inner stress in the process of bending. The response of printing paper-based sensors only shows the 6.7% decay even under an extremely high bending degree.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05181

DOI: 10.1021/acsami.7b05181

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.