5 years ago

Bilayered Nanoparticles with Sequential Release of VEGF Gene and Paclitaxel for Restenosis Inhibition in Atherosclerosis

Bilayered Nanoparticles with Sequential Release of VEGF Gene and Paclitaxel for Restenosis Inhibition in Atherosclerosis
Chun Wang, Chao Liu, Hongzhi Xie, Cunxian Song, Quan Fang, Cuiwei Wang, Yongxia Chen, Xuanling Li, Xiaoyu Liang, Hongfan Sun, Hailing Zhang, Jianwei Duan, Xiaowei Zhu, Jing Yang, Chen Li, Yongjun Li, Ziying Yang, Yong Zeng
Complete reendothelialization followed by inhibition of smooth muscle cell (SMC) proliferation is considered as an effective therapeutic option to prevent restenosis. We have designed poly(lactide-co-glycolide)-loaded bilayered nanoparticles (NPs) with the ability to sequentially release vascular endothelial growth factor (VEGF)-encoding plasmids from the outer layer and paclitaxel (PTX) from the core to promote endothelial regeneration as well as prevent restenosis. Comparing with conventional NPs, which release VEGF plasmid and PTX simultaneously, we expect that the bilayered NPs could release the VEGF plasmid more rapidly, followed by a delayed release of PTX, resulting in an efficient VEGF gene transfection, which ideally could promote reendothelialization and inhibit excessive SMC growth. Indeed, in the present study, we have observed efficient gene transfection using a model plasmid as well as cell growth attenuation in vitro using Chinese hamster ovary cells. Therapeutic efficacy of the bilayered NPs on restenosis was further evaluated in vivo using a rabbit model of atherosclerosis. The bilayered NPs were administered locally via balloon angioplasty to the injured aortic wall through perfusion. Twenty-eight days after the NP administration, rabbits treated with the bilayered NPs exhibited rapid reendothelialization and inhibition of restenosis, as demonstrated by histological analysis. Increased level of VEGF and decreased level of C-reactive protein, a biological marker that is closely related to atherosclerosis, were also observed from animals treated with the bilayered NPs, implicating ameliorated atherosclerosis. Our results suggest that the VEGF plasmid-/PTX-loaded bilayered NPs exert a beneficial impact on atherosclerotic restenosis by sequentially releasing VEGF and PTX in vivo.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08312

DOI: 10.1021/acsami.7b08312

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.