5 years ago

Fluorine- and Nitrogen-Codoped MoS2 with a Catalytically Active Basal Plane

Fluorine- and Nitrogen-Codoped MoS2 with a Catalytically Active Basal Plane
Dandan Song, Faming Gao, Li Hou, Junshuang Zhou, Dong Wang, Xianfeng Hao, Yuanzhe Wang, Shanshan Liu
Two-dimensional molybdenum disulfide (2D MoS2) has drawn persistent interests as one of the most promising alternatives to Pt catalysts for the hydrogen evolution reaction (HER). It is generally accepted that the edge sites of 2D MoS2 are catalytically active but the basal planes are inert. Activating the MoS2 basal plane is an obvious strategy to enhance the HER activity of this material. However, few approaches have sought to activate the basal plane. Here, for the first time, we demonstrate that the inert basal planes can be activated via the synergistic effects of nitrogen and fluorine codoping. Our first-principles calculations reveal that nitrogen in the basal plane of the fluorine- and nitrogen-codoped MoS2 (NF-MoS2) can act as a new active and further tuneable catalytic site. The as-prepared NF-MoS2 catalyst exhibited an enormously enhanced HER activity compared to that of pure MoS2 and N-doped MoS2 due to the chemical codoping effect. This work will pave a novel pathway for enhancing the HER activity using the synergistic effects of chemical codoping.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06795

DOI: 10.1021/acsami.7b06795

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.