3 years ago

Generalized method of images and reflective color generation from ultra-thin multipole resonators.

Ming Ye, Shi-Qiang. Li, Kenneth B. Crozier, Wuzhou Song

The multipole expansion has found limited applicability for optical dielectric resonators in inhomogeneous environment, such as on the surface of substrates. Here, we generalize the method of images to multipole analysis for light scattering by dielectric nanoparticles on conductive substrates. We present examples illustrating the physical insight provided by our method, including selection rules governing the excitation of the multipoles. We propose and experimentally demonstrate a new mechanism to generate high resolution surface color. The dielectric resonators employed are very thin (less than 50 nm), i.e. similar in thickness to the plasmonic resonators that are currently being investigated for structural color. The generalized method of images opens up new prospects for design and analysis of metasurfaces and optical dielectric resonators.

Publisher URL: http://arxiv.org/abs/1801.07074

DOI: arXiv:1801.07074v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.