3 years ago

Tunable Optoelectronic Properties of Triply-Bonded Carbon Molecules with Linear and Graphyne Substructures.

Deepak Kumar Rai, Himanshu Chakraborty, Alok Shukla

In this paper we present a detailed computational study of the electronic structure and optical properties of triply-bonded hydrocarbons with linear, and graphyne substructures, with the aim of identifying their potential in opto-electronic device applications. For the purpose, we employed a correlated electron methodology based upon the Pariser-Parr-Pople model Hamiltonian, coupled with the configuration interaction (CI) approach, and studied structures containing up to 42 carbon atoms. Our calculations, based upon large-scale CI expansions, reveal that the linear structures have intense optical absorption at the HOMO-LUMO gap, while the graphyne ones have those at higher energies. Thus, the opto-electronic properties depend on the topology of the {graphyne substructures, suggesting that they can be tuned by means of structural modifications. Our results are in very good agreement with the available experimental data.

Publisher URL: http://arxiv.org/abs/1709.02344

DOI: arXiv:1709.02344v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.