3 years ago

Critical role of quantum dynamical effects in the Raman spectroscopy of liquid water.

Xinzijian Liu, Jian Liu

Understanding the Raman spectroscopy at the atomistic level is important for the elucidation of dynamical processes in liquid water. Because the polarizability (or its time derivative) is often a highly nonlinear function of coordinates or/and momenta, we employ the linearized semiclassical initial value representation for quantum dynamical simulations of liquid water (and heavy water) under ambient conditions based on an ab initio based, flexible, polarizable model (the POLI2VS force field). It is shown that quantum dynamical effects play a critical role in reproducing the peaks in the intermediate region between the librational and bending bands, those between the bending and stretching bands, and the double-peak in the stretching band in the experimental isotropic Raman spectrum. In contrast, quantum dynamical effects are important but less decisive in the anisotropic Raman spectrum. By selectively freezing either the intramolecular O-H stretching or H-O-H bending mode, we demonstrate that the peak in the same intermediate region of the isotropic Raman spectrum arises from the interplay of the stretching and bending motions while a substantial part of the peak in the intermediate region (2000-2400 cm-1) of the anisotropic Raman spectrum may be attributed to the combined motion of the bending and librational modes.

Publisher URL: http://arxiv.org/abs/1712.10115

DOI: arXiv:1712.10115v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.