3 years ago

Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst

Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst
Richard G. Finke, Joel T. Kirner
A planar organic thin film composed of a perylene diimide dye (N,N′-bis(phosphonomethyl)-3,4,9,10-perylenediimide, PMPDI) with photoelectrochemically deposited cobalt oxide (CoOx) catalyst was previously shown to photoelectrochemically oxidize water (DOI: 10.1021/am405598w). Herein, the same PMPDI dye is studied for the sensitization of different nanostructured metal oxide (nano-MOx) films in a dye-sensitized photoelectrochemical cell architecture. Dye adsorption kinetics and saturation decreases in the order TiO2 > SnO2 ≫ WO3. Despite highest initial dye loading on TiO2 films, photocurrent with hydroquinone (H2Q) sacrificial reductant in pH 7 aqueous solution is much higher on SnO2 films, likely due to a higher driving force for charge injection into the more positive conduction band energy of SnO2. Dyeing conditions and SnO2 film thickness were subsequently optimized to achieve light-harvesting efficiency >99% at the λmax of the dye, and absorbed photon-to-current efficiency of 13% with H2Q, a 2-fold improvement over the previous thin-film architecture. A CoOx water-oxidation catalyst was photoelectrochemically deposited, allowing for photoelectrochemical water oxidation with a faradaic efficiency of 31 ± 7%, thus demonstrating the second example of a water-oxidizing, dye-sensitized photoelectrolysis cell composed entirely of earth-abundant materials. However, deposition of CoOx always results in lower photocurrent due to enhanced recombination between catalyst and photoinjected electrons in SnO2, as confirmed by open-circuit photovoltage measurements. Possible future studies to enhance photoanode performance are discussed, including alternative catalyst deposition strategies or structural derivatization of the perylene dye.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05874

DOI: 10.1021/acsami.7b05874

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.