3 years ago

Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter and Saturn.

F. J. Pérez-Invernón, A. Luque, F. J. Gordillo-Vázquez

While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3D model we investigate the influence of lightning-emitted electromagnetic pulses (EMP) on the upper atmosphere of Venus, Saturn and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, oblique) can produce mesospheric transient optical emissions of different shapes, sizes and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.

Publisher URL: http://arxiv.org/abs/1801.06661

DOI: arXiv:1801.06661v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.