5 years ago

Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics

Fabrication of Biocompatible, Functional, and Transparent Hybrid Films Based on Silk Fibroin and Epoxy Silane for Biophotonics
Robson R. da Silva, Sidney J. L. Ribeiro, Silvia H. Santagneli, Hernane S. Barud, André C. Amaral, Agnieszka Tercjak, Caio G. Otoni, Maurício Cavicchioli, Renata A. Carvalho, Laís R. Lima
In this work we explored the fabrication of flexible and transparent hybrids of silk fibroin (SF) and epoxy-modified siloxane for photonic applications. It is well-known that regenerated SF solutions can form free-standing films with high transparency. Although SF has a restricted number of chemically reactive side groups, the main issues of as-cast pristine SF films regard the high solubility into aqueous media, brittleness, and low thermal stability. The design of SF films with enhanced functionality but high transparency triggers new opportunities on a broader range of applications in biophotonics. Here we present a simple, functional, yet remarkably versatile hybrid material derived from silica sol–gel process based on SF protein and (3-glycidyloxypropyl)trimethoxysilane (GPTMS), an organically modified silicon-alkoxide owning a reactive terminal epoxy group. Specifically, we investigated the effect of the addition of GPTMS into SF solutions on the processability, morphology, crystallinity, and mechanical and optical properties of the resulting hybrid films. Highly transparent (ca. 90%) and flexible free-standing hybrid films were achieved. Cell viability assays revealed that the hybrid films are noncytotoxic to rat osteoblast cells even at high GPTMS content (up to 70 wt %). The hybrid films showed enhanced thermal stability and were rich in organic (epoxy) and inorganic (silanol) functional groups according to the content of GPTMS. We also evaluated the successful preparation of high-quality optical red emissive SF hybrid films by loading YVO4:Eu3+ nanoparticles at low concentration (<5 wt %). A meaningful description of the hybrid film structure is reported from the combination of scanning electron and atomic force microscopies, vibrational spectroscopy, solid-state NMR, and X-ray diffraction analyses.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06061

DOI: 10.1021/acsami.7b06061

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.