4 years ago

Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au–Pd Nanostructure Incorporation for Solar-Hydrogen Production

Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au–Pd Nanostructure Incorporation for Solar-Hydrogen Production
Ajay Kushwaha, Goutam Kumar Dalapati, Saeid Masudy-Panah, Roozbeh Siavash Moakhar, Chin Sheng Chua
Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold–palladium (Au–Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained photocurrent of ∼90% for 20 min. The influence of chemical composition on the photocathode performance and stability has been discussed in detail. In addition, O-rich CuO photocathodes deposited with Au–Pd nanostructures have shown enhanced photoelectrochemical performance. Linear scan voltammetry characteristic shows ∼25% enhancement in photocurrent after Au–Pd deposition and reaches ∼4 mA/cm2 at “0” V v/s RHE. Hydrogen evolution rate significantly depends on the elemental composition of CuO and metal nanostructure. The present work has demonstrated a stable photocathode with high photocurrent for visible-light-driven water splitting and hydrogen production.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b02685

DOI: 10.1021/acsami.7b02685

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.