3 years ago

Universal Origin for Environment-Assisted Quantum Transport in Exciton Transfer Networks.

Yonatan Dubi, Elinor Zerah-Harush

Environment-assisted quantum transport (ENAQT) is the possibility of an external environment to enhance transport efficiency of quantum particles. This idea has generated much excitement over recent years, especially due to the experimentally-motivated possibility of ENAQT in photo-synthetic exciton transfer complexes. Many theoretical calculations have shown ENAQT, but the explanations for its origin differ, and a universal explanation has been elusive. Here we demonstrate a universal origin for ENAQT in quantum networks with a dephasing environment, based on a relation between exciton current and occupation within a Markovian open quantum system approach. We show that ENAQT appears due to two competing processes, namely the tendency of dephasing to make the exciton population uniform, and the formation of an exciton density gradient, defined by the source and the sink. Furthermore, we find a geometric condition on the network for the appearance of ENAQT, relevant to natural and artificial systems.

Publisher URL: http://arxiv.org/abs/1801.06799

DOI: arXiv:1801.06799v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.