3 years ago

Fermionic spinon theory of square lattice spin liquids near the N\'eel state.

Alex Thomson, Subir Sachdev, arXiv:1703.02426

Quantum fluctuations of the N\'eel state of the square lattice antiferromagnet are usually described by a $\mathbb{CP}^1$ theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge 2 Higgs fields, deconfined phases with $\mathbb{Z}_2$ topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in $\pi$-flux in each square lattice plaquette. Fluctuations about this $\pi$-flux state are described by 2+1 dimensional quantum chromodynamics (QCD$_3$) with a SU(2) gauge group and $N_f=2$ flavors of massless Dirac fermions. It has recently been argued by Wang et al. (arXiv:1703.02426) that this QCD$_3$ theory describes the N\'eel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD$_3$, and obtain fermionic dual descriptions of the phases with $\mathbb{Z}_2$ topological order obtained earlier using the bosonic $\mathbb{CP}^1$ theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multi-critical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.

Publisher URL: http://arxiv.org/abs/1708.04626

DOI: arXiv:1708.04626v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.