3 years ago

Design of Pickering Micro- and Nanoemulsions Based on the Structural Characteristics of Nanocelluloses

Design of Pickering Micro- and Nanoemulsions Based
on the Structural Characteristics of Nanocelluloses
Isabelle Capron, Clara Jiménez Saelices
The development of biobased materials with lower environmental impact has seen an increased interest these last years. In this area, nanocelluloses have shown a particular interest in research and industries. Cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) are both known to stabilize oil–water interfaces, forming the so-called Pickering emulsions which are surfactant-free, highly stable emulsions armored by a layer of solid particles. This work describes the emulsion’s characteristics and properties according to particle size, shape and surface chemistry in order to produce controlled micro- and nanoemulsions stabilized by nanocelluloses. For this purpose, four nanocelluloses which vary in source, length, width, and surface charge density were used. Isolated droplets were produced by CNCs and interconnected droplets by CNFs that led to distinct drop size (micro- and nanosized), organization of nanoparticles at the surface of the droplets, stability, and mechanical properties through rheological measurements. This work gives a precise description of the resulting emulsions and shows the ability to produce nanosized droplets for CNC and TEMPO oxidized CNF but not for the less fibrillated CNF using HP-homogenizer. Individual noncreaming droplets with average diameters as low as 350 nm were achieved for cotton CNCs and TEMPO oxidized CNFs.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b01564

DOI: 10.1021/acs.biomac.7b01564

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.