3 years ago

Catalyzed Chain Transfer in Vinyl Acetate Polymerization Mediated by 9-Oxyphenalenone Cobalt(II) Complexes

Catalyzed Chain Transfer in Vinyl Acetate Polymerization Mediated by 9-Oxyphenalenone Cobalt(II) Complexes
Ekaterina V. Bellan, Christophe Fliedel, Rinaldo Poli, Florence Gayet, Lucas Thevenin
The vinyl acetate (VAc) radical polymerization initiated by V-70 at 30 °C in the presence of [CoII(OPN)2] (OPN = deprotonated 9-oxyphenalenone), 1, leads to PVAc of lower molecular weight (MW) than expected for organometallic-mediated radical polymerization (OMRP), whether reversible termination or degenerate transfer conditions are used. This represents the first clear evidence of catalyzed chain transfer (CCT) in VAc polymerization. The bis-pyridine adduct [CoII(OPN)2(py)2], 2, shows a marginally lower polymerization rate and an increased CCT activity relative to 1, whereas the activity decreases with marginal effect on the polymerization rate upon addition of excess py. However, raising the temperature to 80 °C (with AIBN as initiator) led to a low MW polymer even in the presence of a large py excess. The CCT was confirmed by 1H NMR characterization of the chain ends and by a MALDI-TOF MS analysis of the recovered polymer. The collective trends are consistent with greater CCT activity for the 5-coordinate complex [CoII(OPN)2(py)] relative to 1 and 2. The presence of py association/dissociation equilibria relating these three complexes was confirmed by a 1H NMR investigation.

Publisher URL: http://dx.doi.org/10.1021/acsmacrolett.7b00551

DOI: 10.1021/acsmacrolett.7b00551

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.