3 years ago

Function portability of molecular dynamics on heterogeneous parallel architectures with OpenCL

Godehard Sutmann, Wilhelm Homberg, Rene Halver


Classical molecular dynamics simulation for atomistic systems is implemented in OpenCL and benchmarked on a variety of different hardware platforms. Modifying the number of particles and system size in the study provides insight into characteristics of parallel compute platforms, where latency, data transfer, memory access characteristics and compute intense work can be identified as fingerprints in benchmark runs. Data layouts are compared, for which the access of structure-of-arrays shows best performance in most cases. It is demonstrated that function portability can be achieved straightforwardly with OpenCL, while performance portability lacks behind as various architectures strongly depend on specific vectorisation optimisation.

Publisher URL: https://link.springer.com/article/10.1007/s11227-017-2232-2

DOI: 10.1007/s11227-017-2232-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.