3 years ago

A Divergent Approach to Indoles and Oxazoles from Enamides by Directing-Group-Controlled Cu-Catalyzed Intramolecular C–H Amination and Alkoxylation

A Divergent Approach to Indoles and Oxazoles from Enamides by Directing-Group-Controlled Cu-Catalyzed Intramolecular C–H Amination and Alkoxylation
Chiaki Yamamoto, Masahiro Miura, Koji Hirano, Kazutaka Takamatsu
A directing-group-controlled, copper-catalyzed divergent approach to indoles and oxazoles from enamides has been developed. The picolinamide-derived enamides undergo the intramolecular aromatic C–H amination in the presence of a Cu(OPiv)2 catalyst and an MnO2 oxidant to form the corresponding indoles in good yields. On the other hand, simpler aryl- or alkyl-substituted enamides are converted to the 2,4,5-trisubstituted oxazole frameworks via vinylic C–H alkoxylation under identical conditions. The copper catalysis can provide uniquely divergent access to indole and oxazole heteroaromatic cores of great importance in medicinal and material chemistry.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b01667

DOI: 10.1021/acs.joc.7b01667

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.