5 years ago

In Situ Observation of Thermal Proton Transport through Graphene Layers

In Situ Observation of Thermal Proton Transport through Graphene Layers
Tieying Yang, Bin Zhao, Yong Wang, Guangzhi Yin, Lin Yi, Zijian Xu, Yi Gao, Xing Liu, Li Li, Yadong Li, Gengwu Ji, Xiaolong Li, Rui Wang, Daming Zhu, Sheng Jiang, Renzhong Tai
Protons can penetrate through single-layer graphene, but thicker graphene layers (more than 2 layers), which possess more compact electron density, are thought to be unfavorable for penetration by protons at room temperature and elevated temperatures. In this work, we developed an in situ subsecond time-resolved grazing-incidence X-ray diffraction technique, which fully realizes the real-time observation of the thermal proton interaction with the graphene layers at high temperature. By following the evolution of interlayer structure during the protonation process, we demonstrated that thermal protons can transport through multilayer graphene (more than 8 layers) on nickel foil at 900 °C. In comparison, under the same conditions, the multilayer graphenes are impermeable to argon, nitrogen, helium, and their derived ions. Complementary in situ transport measurements simultaneously verify the penetration phenomenon at high temperature. Moreover, the direct transport of protons through graphene is regarded as the dominant contribution to the penetration phenomenon. The thermal activation, weak interlayer interaction between layers, and the affinity of the nickel catalyst may all contribute to the proton transport. We believe that this method could become one of the established approaches for the characterization of the ions intercalated with 2D materials in situ and in real-time.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03359

DOI: 10.1021/acsnano.7b03359

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.