3 years ago

An NAD+-dependent sirtuin depropionylase and deacetylase (Sir2La) from the probiotic bacterium Lactobacillus acidophilus NCFM

N., B., Rajabi, Svensson, C. A., A. S., Madsen, Olsen, S. V., Olesen
Sirtuins-a group of NAD+-dependent deacylases-have emerged as key in the connection between NAD+ metabolism and aging. This class of enzymes hydrolyze a range of {varepsilon}-N-acyllysine PTMs and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM and screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, showed that one of the investigated proteins-Sir2La-is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity as a sirtuin, known sirtuin inhibitors nicotinamide and suramin as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. Based on steady-state kinetics Sir2La showed a slight preference for propionyllysine over acetyllysine and butyryllysine, driven both by KM (14 M vs 21 M and 15 M) and kcat (4.4{middle dot}10-3 s-1 vs 2.5{middle dot}10-3 s-1 and 1.21{middle dot}10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.

Publisher URL: http://biorxiv.org/cgi/content/short/252379v1

DOI: 10.1101/252379

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.