3 years ago

Pb2+–Calcite Interactions under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic Growth of Cerussite

Pb2+–Calcite Interactions under
Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic
Growth of Cerussite
Vincent De Andrade, Ke Yuan, Neil C. Sturchio, Zhange Feng, Paul Fenter, Sang Soo Lee
The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion–mineral interactions during dissolution under far-from-equilibrium conditions remains limited. Here we show that calcite (CaCO3) exhibits a rich array of dissolution features in acidic Pb-bearing solutions. During the initial stage, calcite exhibits nonclassical surface features characterized as micropyramids that developed spontaneously. Subsequent pseudomorphic growth of cerussite (PbCO3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded a cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution–precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing microstructures observed in natural and synthetic carbonate minerals by dissolution. In addition, heterogeneous microenvironments created in transport limited reactions in pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b11682

DOI: 10.1021/acs.jpcc.7b11682

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.