3 years ago

Direct Observation of Correlated Triplet Pair Dynamics during Singlet Fission Using Ultrafast Mid-IR Spectroscopy

Direct Observation of Correlated Triplet Pair Dynamics
during Singlet Fission Using Ultrafast Mid-IR Spectroscopy
Ryan D. Pensack, Noel C. Giebink, Eric R. Kennehan, Christopher Grieco, John B. Asbury, John E. Anthony, Marcia M. Payne, Adam Rimshaw, Alyssa N. Brigeman, Hwon Kim, Gregory D. Scholes
Singlet fission is an exciton multiplication mechanism in organic materials whereby high energy singlet excitons can be converted into two triplet excitons with near unity quantum yields. As new singlet fission sensitizers are developed with properties tailored to specific applications, there is an increasing need for design rules to understand how the molecular structure and crystal packing arrangements influence the rate and yield with which spin-correlated intermediates known as correlated triplet pairs can be successfully separated—a prerequisite for harvesting the multiplied triplets. Toward this end, we identify new electronic transitions in the mid-infrared spectral range that are distinct for both initially excited singlet states and correlated triplet pair intermediate states using ultrafast mid-infrared transient absorption spectroscopy of crystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). We show that the dissociation dynamics of the intermediates can be measured through the time evolution of the mid-infrared transitions. Combining the mid-infrared with visible transient absorption and photoluminescence methods, we track the dynamics of the relevant electronic states through their unique electronic signatures and find that complete dissociation of the intermediate states to form independent triplet excitons occurs on time scales ranging from 100 ps to 1 ns. Our findings reveal that relaxation processes competing with triplet harvesting or charge transfer may need to be controlled on time scales that are orders of magnitude longer than previously believed even in systems like TIPS-Pn where the primary singlet fission events occur on the sub-picosecond time scale.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b11228

DOI: 10.1021/acs.jpcc.7b11228

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.