4 years ago

Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study

Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study
Guanglin Xia, Jian Zhang, Zaiping Guo, Dianwu Zhou
Graphene nanosheet has recently demonstrated catalytic and agglomeration blocking effects toward MgH2 nanoparticles. Nevertheless, there is a very limited understanding of the relationship between the structural characteristics of graphene nanosheet and the hydrogen sorption properties of MgH2 nanoparticles. Using first-principles calculations, we investigate the structural, energetic, and electronic properties of MgH2 clusters supported on pristine and modified graphene with carbon vacancy or heteroatom (B, N, Si, P, S, Fe, Co, Ni, and Al) doping. The results show that the formation ability of vacancy and heteroatom defects in the graphene lattice is enhanced in the order of vacancy, Al, Ni, S, Co, Fe, Si, P, B, and N. Among them, the B- and P-doped graphene nanosheets, especially the B-doped one, exhibit remarkable synergetic effects toward enhancing the catalysis and confinement of MgH2 hydride. Analysis of electronic structures shows that the direct bonding between MgH2 clusters and B/P-doped graphene and the electron transfer from MgH2 clusters into the B/P-doped graphene are most likely to be the underlying reasons for the improved dispersion and enhanced dehydrogenation properties of MgH2 clusters.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05848

DOI: 10.1021/acs.jpcc.7b05848

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.