5 years ago

Role of CO* as a Spectator in CO2 Electroreduction on RuO2

Role of CO* as a Spectator in CO2 Electroreduction on RuO2
Arghya Bhowmik, Tejs Vegge, Heine Anton Hansen
RuO2-based electrocatalysts are found to be active at low overpotential toward direct electrochemical reduction of CO2 to formic acid and methanol. RuO2 can circumvent the thermodynamic bottleneck resulting from the scaling relations observed on metallic electrocatalyst, by utilizing an alternate pathway through oxygen-coordinated intermediates. Employing density functional theory based computational electrocatalysis models we show adsorbate–adsorbate interaction effects for adsorbates and reaction intermediates on the RuO2(110) surface are large and impactful to the reaction thermodynamics. We studied binding energy amendment due to adsorbate interaction (steric and electronic) with varying coverage of CO* spectators on the catalyst surface. Implications on the reaction pathways help us rationalize differences in experimentally observed carbonaceous product mix and suppression of the hydrogen evolution reaction (HER). We show that a moderate CO* coverage (∼50%) is necessary for obtaining methanol as a product and that higher CO* coverages leads to very low overpotential for formic acid evolution. Our analysis also clarifies the importance of the reaction condition for CO2 reduction to liquid fuels utilizing RuO2-based electrocatalysts.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04242

DOI: 10.1021/acs.jpcc.7b04242

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.