5 years ago

Understanding Chemical Ordering in Intermetallic Clathrates from Atomic Scale Simulations

Understanding Chemical Ordering in Intermetallic Clathrates from Atomic Scale Simulations
Mattias Ångqvist, Paul Erhart
Intermetallic clathrates exhibit great variability with respect to elemental composition and distribution. While this provides a lot of flexibility for tuning properties, it also poses a challenge with regard to developing a comprehensive understanding of these systems. Here, we employ a combination of alloy cluster expansions and density functional theory calculations to exhaustively sample the compositional space with ab initio accuracy. We apply this methodology to study chemical ordering and related properties in the clathrate systems Ba8GaxGe46–x, Ba8GaxSi46–x, Ba8AlxGe46–x, and Ba8AlxSi46–x as a function of composition and temperature. We achieve very good agreement with the available experimental data for the site occupancy factors (SOFs) even for stoichiometries outside the composition range considered during construction of the cluster expansions. This validation enables us to reconcile the variations in the experimental data and explain nonmonotonic variations of the SOFs. In particular, we provide a rationale for the extreme SOF behavior with varying composition observed in Al-based clathrates. Furthermore, we quantify the effect of chemical ordering on both heat capacity and lattice expansion. Finally, we determine the effect of chemical disorder on the displacements of the guest species (Ba), which enables us to at least partially explain experimental observations of the nuclear density of Ba in different clathrates.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02686

DOI: 10.1021/acs.chemmater.7b02686

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.