3 years ago

Anisotropic Turbulent Mass Transfer Model and Its Application to a Gas-Particle Bubbling Fluidized Bed

Anisotropic Turbulent Mass Transfer Model and Its
Application to a Gas-Particle Bubbling Fluidized Bed
Wenbin Li, Yuanyuan Shao, Jesse Zhu
The recently developed Reynolds mass flux (RMF) model is applied to simulate the reactive flow in a gas-particle bubbling fluidized bed (BFB). By using this model, the profiles of species/particles concentration and phase velocities are able to be predicted. The proposed model avoids the generalized Boussinesq’s postulation, thereby realizing the simulation of anisotropic mass transfer. The simulations are validated by experiments for ozone decomposition in a gas-particle bubbling fluidized bed and satisfactory agreement is found between them. Furthermore, the proposed model successfully characterizes the anisotropy of turbulent mass diffusivity in gas-particle BFB.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b03715

DOI: 10.1021/acs.iecr.7b03715

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.