3 years ago

Static and Dynamic Permeability Assay for Hydrophilic Small Molecules Using a Planar Droplet Interface Bilayer

Static and Dynamic Permeability Assay for Hydrophilic
Small Molecules Using a Planar Droplet Interface Bilayer
Siyoung Q. Choi, Hyun-Ro Lee, KyuHan Kim, Yohan Lee
Because numerous drugs are administered through an oral route and primarily absorbed at the intestine, the prediction of drug permeability across an intestinal epithelial cell membrane has been a crucial issue in drug discovery. Thus, various in vitro permeability assays have been developed such as the Caco-2 assay, the parallel artificial membrane permeability assay (PAMPA), the phospholipid vesicle-based permeation assays (PVPA) and Permeapad. However, because of the time-consuming and quite expensive process for culturing cells in the Caco-2 assay and the unknown microscopic membrane structures of the other assays, a simpler yet more accurate and versatile technique is still required. Accordingly, we developed a new platform to measure the permeability of small molecules across a planar freestanding lipid bilayer with a well-defined area and structure. The lipid bilayer was constructed within a conventional UV spectrometer cell, and the transport of drug molecules across the bilayer was recorded by UV absorbance over time. We then computed the permeability from the time-dependent diffusion equation. We tested this assay for five exemplary hydrophilic drugs and compared their values with previously reported ones. We found that our assay has a much higher permeability compared to the other techniques, and this higher permeability is related to the thickness of the lipid bilayer. Also we were able to measure the dynamic permeability upon the addition of a membrane-disrupting surfactant demonstrating that our assay has the capability to detect real-time changes in permeability across the lipid bilayer.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b03004

DOI: 10.1021/acs.analchem.7b03004

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.