3 years ago

P2-type Na 0.67 Mn 0.6 Fe 0.4-x-y Zn x Ni y O 2 cathode material with high-capacity for sodium-ion battery

Xing-jiang Liu, Han Xu, Jun Zong

Abstract

The P2-type Na0.67Mn0.6Fe0.4O2 (NaMnFe), Na0.67Mn0.6Fe0.3Zn0.1O2 (NaMnFeZn), and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 (NaMnFeZnNi) are prepared using an acetate decomposition reaction and developed as promising cathode materials for high-capacity sodium-ion batteries. The XRD patterns show that Zn2+ and Ni2+ ions are successfully incorporated into the lattice of the Na-Mn-Fe-O system, and the P2-type structure remains unchanged after substitution. The charging/discharging tests exhibit that the Na0.67Mn0.6Fe0.4O2, Na0.67Mn0.6Fe0.3Zn0.1O2, and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrodes have the capacities of 200.4, 182.0, and 202.2 mAhg−1, respectively. The Na0.67Mn0.6Fe0.4O2 electrode has a higher initial capacity but faster capacity decay. When partially substituting Zn and Ni for Fe, the Na0.67Mn0.6Fe0.3Zn0.1O2 and Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrodes exhibit lower reversible capacity but improved cycling stability (88.3 and 93.4% capacity retention over 100 cycles). The greatly improved electrochemical performance of the Na0.67Mn0.6Fe0.2Zn0.1Ni0.1O2 electrode apparently belongs to the contribution of the Zn2+ and Ni2+ substitution, which facilitates to alleviate the Jahn-Teller distortion of Mn and suppresses the polarization.

Publisher URL: https://link.springer.com/article/10.1007/s11581-018-2442-5

DOI: 10.1007/s11581-018-2442-5

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.